

Statistical Competencies for Clinical & Translational Science: Evolution in Action

Felicity Enders, PhD

Association of Clinical and Translational Statisticians Annual Meeting Boston, MA, August 2, 2014

Introduction

CTS is a relatively new discipline

- Competencies in flux
- Competencies serve to define the discipline
 - Program evaluation
 - Learner evaluation
 - Self-assessment
 - Validated instruments
 - Provide guidance regarding training
 - Statistics is too big to teach everything

Overview

- Refining the competencies
- Assessing the competencies
- Assessing CTS learners
- Consensus on the competencies

Refining the Competencies

Enders (2011) "Evaluating mastery of biostatistics for medical researchers: need for a new assessment tool." Clinical and Translational Science, Dec 2011; 4(6): 448–454.

Who Are CTS Learners?

- CTS learners are typically not statisticians
 - Similar to Public Health students
 - Graduate level
- Variety of learner goals
 - Read the literature
 - Co-I; co-author
 - PI; first or last author
- Variety of learning modalities
 - Traditional graduate level coursework
 - CME or other on-demand access

CTS Statistics Competencies (2009)

Describe the basic principles and practical importance of random variation, systematic error, sampling error, measurement error, hypothesis testing, type I and type II errors, and confidence limits

Compute sample size, power, and precision for comparisons of two independent samples with respect to continuous and binary outcomes

Explain the uses, importance, and limitations of early stopping rules in clinical trials Scrutinize the assumptions behind different statistical methods and their corresponding limitations Generate simple descriptive and inferential statistics that fit the study design chosen and answer research question

Describe the uses of meta-analytic methods

MAYO CLINIC Workgroup CECC. Core Competencies in Clinical and Translational Science for Master's Candidates. http://www.ctsaweb.org/index.cfm?fuseaction=committee.viewCommittee&com_ID=5

Statistics-Related Competencies

Sources of Error

- Describe the concepts and implications of reliability and validity of study measurements
- Evaluate the reliability and validity of measures
- Assess sources of bias and variation in published studies.
- Assess threats to study validity (bias) including problems with sampling, recruitment, randomization, and comparability of study groups

Scientific Communication

- Communicate clinical and translational research findings to difference groups of individuals, including colleagues, students, the lay public, and the media
- Write summaries of scientific information for use in the development of clinical health care policy

Study Design

 Propose study designs for addressing a clinical or translational research question

Workgroup CECC. Core Competencies in Clinical and Translational Science for Master's CLINIC Candidates. http://www.ctsaweb.org/index.cfm?fuseaction=committee.viewCommittee&com_ID=5

Other Sources of Competencies

- Calhoun et al. Development of a Core Competency Model for the Master of Public Health Degree. American Journal of Public Health. 2008; 98(9):10.
- Moher et al. CONSORT 2010 Explanation and Elaboration: updated guidelines for reporting parallel group randomised trials. BMJ. 2010; 340:c869, 1–28.
- Des Jarlais et al. Improving the reporting quality of nonrandomized evaluations of behavioral and public health interventions: the TREND statement. Am J Public Health. 2004; 94(3):361–366.
- Vandenbroucke et al. Strengthening the Reporting of Observational Studies in Epidemiology (STROBE): explanation and elaboration. PLoS medicine. 2007; 4(10):e297.

Why Public Health?

- Public Health graduate students are nonstatisticians in a medical field
- They will use statistics to read and publish in the medical research literature

 Competencies were compared, condensed, and extended in Enders (2011)

Clinical and Translational Science	Public Health	Guidelines
Assess sources of bias and variation in published studies		CONSORT TREND STROBE
Assess threats to study validity (bias)		
including problems with sampling,		
recruitment, randomization, and		
comparability of study groups		
Propose study designs for addressing a		STROBE
clinical or translational research question		
Describe the basic principles and practical importance of random variation,	Describe the basic concepts of probability,	
systematic error, sampling error,	random variation, and	
measurement error, hypothesis testing,	commonly used statistical	
type I and type II errors, and confidence	probability distributions	
limits		
Compute sample size, power, and		CONSORT
precision for comparisons of two		TREND
independent samples with respect to		STROBE
continuous and binary outcomes		
المستحد الأعلمين والقزالة فالمتعاذ المستعا وواويها		

Clinical and Translational Science	Public Health	Guidelines
Explain the uses, importance, and limitations of early stopping rules in clinical trials		CONSORT TREND
Describe the concepts and implications of reliability and validity of study measurements	Calculate basic epidemiologic measures	TREND
	Draw appropriate inferences	
Evaluate the reliability and validity of measures	from epidemiologic data	
Scrutinize the assumptions behind different statistical methods and their corresponding limitations	Describe preferred methodologic alternatives to commonly used statistical methods when assumptions are not met	

Clinical and Translational Science	Public Health	Guidelines
	Distinguish among the different measurement scales and the implications for selection of statistical methods to be used on the basis of these distinctions	
Generate simple descriptive and inferential statistics that fit the study design chosen and answer research question	Apply descriptive techniques commonly used to summarize public health data	CONSORT TREND STROBE
	Apply common statistical methods for inference	
	Apply descriptive and inferential methodologies according to the	
	type of study design for answering a particular research question	
Describe the uses of meta-analytic		

Describe the uses of meta-analytic methods

MAYO CLINIC

Clinical and Translational Research	Public Health	Guidelines
Communicate clinical and translational research findings to difference groups of individuals, including	Interpret results of statistical analyses found in public health studies	CONSORT TREND STROBE
colleagues, students, the lay public, and the media	Develop written and oral presentations on the basis of statistical analyses for both public	
Write summaries of scientific information for use in the development of clinical health	health professionals and educated lay audiences	

care policy

Competencies Added from Guidelines

Competency	Guidelines
Describe size of the effect with a measure of precision	CONSORT TREND STROBE
Describe the study sample, including sampling methods, the amount and type of missing data, and the implications for generalizability	TREND STROBE
Interpret results in light of multiple comparisons	CONSORT TREND STROBE
Identify inferential methods appropriate for clustered, matched, paired, or longitudinal studies	TREND STROBE
Describe adjusted inferential methods appropriate for the study design, including examination of interaction	CONSORT TREND STROBE
Describe statistical methods appropriate to address loss to followup	STROBE

Assessing the Competencies

Oster R, et al (In Press) "Assessing statistical competencies in clinical and translational science education: one size does not fit all." Clinical and Translational Science, In Press

BERD Education Working Group

- Goal: assess need for training in each competency
- Methods: 18 BERD members surveyed for training needed (high/some/none) by trainee type
- Trainees categorized by background (no research experience/reader/research experience) and intended role (reader/co-I/PI)
- Asked for missing competencies

Competencies Added by Reviewers

Competency

Describe statistical methods appropriate to address loss to follow-up

Understand the reasons for performing research that is reproducible from data collection through publication of results

Understand appropriate methods for data presentation, especially effective statistical graphs and tables

Characterization of diagnostic testing, including sensitivity, specificity, and ROC curves

Describe appropriate data quality and data management procedures

Division of the Competencies

- Based on predicted high need for training for future PIs
 - Fundamental >=70% high need for training
 - Intermediate 60%-69% high need for training
 - Specialized <60% high need for training

Cutoffs assigned post hoc

Fundamental Competencies Goal: **PI**

Assess sources of bias and variation

Propose study designs

Communicate research findings

Understand the reasons for performing reproducible research Describe basic statistical principles and their practical importance Describe concepts and implications of reliability and validity Describe the study sample, including sampling methods Describe size of the effect with a measure of precision Understand appropriate methods for data presentation

Fundamental Competencies Goal: Informed Reader

Assess sources of bias and variation

Propose study designs

Communicate research findings

Understand the reasons for performing reproducible research Describe basic statistical principles and their practical importance Describe concepts and implications of reliability and validity Describe the study sample, including sampling methods Describe size of the effect with a measure of precision Understand appropriate methods for data presentation

©2014 MFMER | slide-21

Distinguish among different measurement scales

Generate simple descriptive and inferential statistics

Identify adjusted inferential methods appropriate for the study design

Scrutinize assumptions and limitations behind different statistical methods

Interpret results in light of multiple comparisons

Identify inferential methods appropriate for clustered, matched, paired or longitudinal studies

Intermediate Competencies Goal: Informed Reader

Distinguish among different measurement scales

Generate simple descriptive and inferential statistics

Identify adjusted inferential methods appropriate for the study design

Scrutinize assumptions and limitations behind different statistical methods

Interpret results in light of multiple comparisons

Identify inferential methods appropriate for clustered, matched, paired or longitudinal studies

Specialized Competencies Goal: **PI**

Describe statistical methods appropriate to address loss to follow-up

Describe appropriate data quality and data management procedures

Compute sample size, power, and precision for comparisons

Explain the uses, importance, and limitations of early stopping rules in clinical trials

Characterization of diagnostic testing, including sensitivity, specificity, and ROC curves

Describe the uses of meta-analytic methods

MAYO

Specialized Competencies Goal: Informed Reader

Describe statistical methods appropriate to address loss to follow-up

Describe appropriate data quality and data management procedures

Compute sample size, power, and precision for comparisons

Explain the uses, importance, and limitations of early stopping rules in clinical trials

Characterization of diagnostic testing, including sensitivity, specificity, and ROC curves

Describe the uses of meta-analytic methods

MAYO

Suggested Modifications

- Comments on the competencies suggested wording changes
 - Critical verb often proposed to change level of competency
- Example [proposed modification]
 - Propose [Assess] study designs for addressing a clinical or translational research question
- Modifications have not yet been assessed

Summary of Competency Assessment

Strengths

- First assessment of competencies
- Added competencies
- Considered learner's background and role

Limitations

- N of 18
- Cutoffs for competency types determined post hoc
- Survey did not use terms "specialized" and "fundamental"

Assessing CTS Learners

Enders F. (2013) "Do Clinical and Translational Science Graduate Students Understand Linear Regression? Development and Early Validation of the REGRESS Quiz." Clinical and Translational Science, 2013 Dec;6(6):444-51.

Kidwell K, Enders F (In Press) "Initial External Validation of REGRESS in Public Health Graduate Students." Clinical and Translational Science, In Press.

Related Work: Assessment Tools for CTS

- In order to evaluate learner competency, validated measures will be needed
- Such instruments need to be:
 - Linked to CTS statistical competencies
 - Normed for CTS learners
 - Relatively quick to complete

Assessment Instruments: Existing tools

- Windish (2007)
 - Well validated
 - For physicians reading the literature
- delMas (2007) CAOS test
 - Well validated
 - For undergraduates after 1st stat course

• For others, see Enders (2011)

Assessment Instruments: New Tools

- Biostatistics Mastery Assessment of Proficiency (Biostatistics MAP)
 - Aligned with first course in biostatistics
 - Univariate and bivariate methods
- Global Regression Expectations in StatisticS (REGRESS)
 - Aligned with training on linear regression
 - Simple & multiple regression models

Biostatistics MAP

Biostatistics MAP

	Student	Student	Post-course-	
	Pre-course	Post-course	Pre-course	
	N=68	N=68	N=68	p-value
Total Score (of 30)	12 (1-25)	18 (0-29)	4 (-10 to 15)	<0.001
Domains	Median	Median	Median	
Domains	(range)	(range)	(range)	
Definitions (of 3)	1 (0-3)	2 (0-3)	0 (-3 to 2)	0.043
Study Design (of 3)	1 (0-3)	2 (0-3)	0 (-1 to 3)	<0.001
Choice of Method (of 7)	3 (0-7)	5 (0-7)	1 (-5 to 7)	<0.001
Application (of 6)	3 (0-6)	4 (0-6)	1 (-2 to 6)	<0.001
Interpretation (of 8)	3 (0-7)	5 (0-8)	2 (-4 to 5)	<0.001
Assumptions (of 3)	1 (0-3)	1 (0-3)	0 (-2 to 2)	0.019
Topics				
General (of 8)	4 (0-8)	5 (0-8)	1 (-6 to 5)	<0.001
Categorical Outcome (of 8)	4 (0-8)	5 (0-8)	1 (-3 to 5)	<0.001
Continuous Outcome (of 8)	3 (0-7)	5 (0-8)	1.5 (-3 to 6)	<0.001
Time to Event Outcome (of 2)	0 (0-2)	0 (0-2)	0 (-1 to 2)	0.123
Diagnostic Testing &	2 (0-4)	3 (0-4)	1 (-3 to 3)	0.010
Agreement (of 4)				

REGRESS: Internal Validation

Students Pre-Course
Students Post-Course
Practicing Statisticians

Total REGRESS Score

REGRESS	Mayo pre- course	Mayo post- course		Practicing Statisticians	p-value	p-value
	N=52	N=59	p-value	N=22	vs. pre	vs. post
Summary Scores	Mean (SD)	Mean (SD)		Mean (SD)		
REGRESS Score (of 27)	9.3 (4.3)	19.0 (3.5)	<0.001	20.1 (3.5)	<0.001	0.21
SLR Score (of 11)	6.3 (2.5)	8.3 (1.6)	<0.001	9.8 (1.2)	<0.001	<0.001
	Median	Median		Median		
Domains	(range)	(range)		(range)		
Interpreting & Using SLR Equation (of 8)	4 (0-8)	6 (3-8)	<0.001	7 (5-8)	<0.001	0.001
Interpreting & Using MLR Equation (of 4)	1 (0-4)	3 (0-4)	<0.001	3 (2-4)	<0.001	0.37
Modeling & Statistical Significance (of 4)	2 (0-4)	3 (2-4)	<0.001	3 (2-4)	<0.001	0.86
Assessing Assumptions (of 4)	1 (0-4)	2 (1-4)	< 0.001	2 (0-4)	< 0.001	0.84
Confounding & Colinearity (of 4)	0 (0-3)	3 (0-4)	< 0.001	3 (0-4)	< 0.001	0.53
Interaction (of 3)	0 (0-3)	2 (0-3)	< 0.001	2 (0-3)	< 0.001	0.82

REGRESS: Initial External Validation

REGRESS Scores (out of 27)	Ν	Mean (SD)	P-value
Pre-Course			
University of Michigan Students	52	11.3 (2.8)	
Mayo Students	52	9.3 (4.3)	0.018
Post-Course			
University of Michigan Students	52	15.2 (3.1)	
Mayo Students	59	19.0 (3.5)	<0.0001
Statisticians	22	20.1 (3.5)	<0.0001

REGRESS: Initial External Validation

REGRESS: Initial External Validation

	Pre-course	Post-	Pre vs.
		Course	Post
Summary	Mean (SD)	Mean (SD)	P-value
REGRESS (out of 27)	11.29 (2.84)	15.17 (3.05)	<0.0001
SLR Score (out of 11)	7.37 (1.46)	7.92 (1.61)	0.0145
Domain	Median	Median	
	(range)	(range)	
Interpreting and Using SLR Equation (of 8)	5.0 (2-7)	5.5 (2-8)	0.0054
Interpreting and using MLR Equation (of 4)	1.5 (0-4)	2.0 (0-4)	<0.0001
Modeling and Statistical Significance (of 4)	2.0 (0-4)	3.0 (1-4)	<0.0001
Assessing Assumptions (of 4)	1.0 (0-3)	2.0 (0-4)	0.0052
Confounding and Colinearity (of 4)	1.0 (0-3)	2.0 (0-4)	<0.0001
Interaction (of 3)	1.0 (0-2)	1.0 (0-3)	0.0007

Assessment Instruments: Current Status

- Biostatistics Mastery Assessment of Proficiency (Biostatistics MAP)
 - Internal validation done
- Global Regression Expectations in StatisticS (REGRESS)
 - Internal validation done (Enders, 2013)
 - 1st external validation done (Kidwell, 2014)
 - Currently creating next version
 - Planning a larger external validation for 2014-2015

Consensus on the Competencies

CTS Statistics Competencies (2011) Four Competencies Added by CTSA Consortium

Describe the role that biostatistics serves in biomedical and public health research.

Defend the significance of data and safety monitoring plans.

Collaborate with biostatisticians in the design, conduct, and analyses of clinical and translational research.

Evaluate computer output containing the results of statistical procedures and graphics.

Workgroup CECC. Core Competencies in Clinical and Translational Science for Master's Candidates. https://www.ctsacentral.org/documents/CTSA%20Core%20Competencies_%20final%202011.pdf

Next Steps

- Update CTS competencies for statistics
 - Modify further?
 - Get buy-in from CTSA PIs
- Assess which competencies are taught to whom
 - For which competencies would Consortiumwide training materials be helpful?
- Update instruments/items to better reflect CTS competencies

Survey of ACTStat Attendees

- Consensus among statisticians
 - Preferred wording
 - Additions
 - Exclusions
- Competency level
 - Fundamental Specialized

ACTS Survey

Competencies

- Which wording do you prefer?
- Should this competency be excluded?
- Specialized = 1
 - Only advanced learners in some areas need to achieve these competencies
- Fundamental = 9
 - Every CTS learner needs to achieve these competencies
- What's missing?
 - Propose additional statistical competencies for CTS learners

Questions & Discussion