Discovery and Validation of Biomarkers for Cancer: 15 Years of Experience with the Early Detection Research Network

Margaret Sullivan Pepe

Fred Hutchinson Cancer Research Center

What are Biomarkers?

- measured in body tissue or fluids
- diagnosis/screening e.g. PSA
- prognosis e.g. Genomic Health Recurrence Score
- risk prediction e.g. BRCA1 gene mutation

What is the Early Detection Research Network (EDRN)?

Created

- 2000 by NCI
- collaborative network to facilitate bench to bedside

Components

- 22 development+8 reference laboratories
- 8 clinical validation centers
- data management and coordinating center
- organized around organ-specific collaborative groups

Early Detection of Ovarian Cancer

- symptomatic only in late stage
- hard to treat in late stage
- easy to treat with surgery in early stage
- incidence = 25/100,000
- seek blood based biomarker for ovarian cancer screening

Phases of Biomarker Development

Pepe et al. JNCI 2001 93:1054-1061

• Focus initially on design of clinical validation studies.

Typical Study Design

The research question: How well does biomarker detect presymptomatic ovarian cancer?

Issues with design

- biased samples: cases and controls from different settings
- biased samples: preclinical disease not addressed
- AUC = $P(Y_{case} > Y_{control})$ is not clinically relevant
- $\bar{Y}_{case} \bar{Y}_{control}$ is not clinically relevant

Rigorous Design for Clinical Validation

- PRoBE
- <u>P</u>rospective enrollment, sample collection and outcome ascertained for a clinically relevant **p**opulation
- <u>R</u>etrospective <u>r</u>andom selection of cases and controls from the cohort
- **<u>B</u>**linded specimen handling and assays
- Evaluation with relevant statistical methods

Pepe et al. JNCI 2008 100:1432-1438.

Components of the PRoBE Design

- (i) Clinical Context
- (ii) Clinical Performance Criteria
- (iii) Biomarker Test
- (iv) Data analysis and sample sizes

Detailed checklists for each aspect (Pepe et al. JNCI 2008 100:1432-1438).

PRoBE for Ovarian Cancer Screening Biomarkers

Clinical Context (Intended use drives design)

- cohort = healthy asymptomatic women
- definitions
 - case = ovarian cancer 6–18 months from sample
 - control = healthy cancer free 5 years from sample
 - other groups to account for whole population
- consequences of a positive test
 - ultrasound followed by surgery if indicated
- \Rightarrow stored blood samples from large healthy cohort, followed prospectively

Clinical Performance Criteria

- ρ = case prevalence = 25/100,000 for age 55–59 TPR = P(Y positive | case)
 FPR = P(Y positive | control)
- B = benefit of work-up to a case
 C = cost of work-up to a control
- Expected benefit

$$= B \operatorname{TPR}
ho - C \operatorname{FPR}(1 -
ho) > 0$$

•
$$\frac{\mathsf{TPR}}{\mathsf{FPR}} > \frac{1-\rho}{\rho}\frac{C}{B}$$

How to Solicit C/B

Approach #1: How many false positives are worth a true positive?

• e.g. 300 mammograms for 1 breast cancer detected

Approach #2: Risk Threshold (*r*)

- expected benefit: BP(D = 1|Y) CP(D = 0|Y)
- risk > r \Rightarrow work-up warranted risk < r \Rightarrow work-up not warranted therefore Br - C(1 - r) = 0 $\Rightarrow C/B = r/(1 - r)$

e.g.
$$r = 20\% \Rightarrow C/B = .20/.80 = 1/4$$

Application to Ovarian Cancer

- In ovarian cancer: "10 surgeries should yield at least 1 cancer."
- r = 0.10 for the Biomarker + Ultrasound test
- TPR_{B+US} = P(Ypositive and USpositive| case)
 = P(Ypositive|case) × P(US positive|case)
 = TPR × 0.755
- $FPR_{B+US} = FPR \times 0.018$

$$\frac{\mathsf{TPR}_{B+\mathsf{US}}}{\mathsf{FPR}_{B+\mathsf{US}}} > \frac{1-\rho}{\rho} \times \frac{r}{1-r} = \frac{1-.00025}{.00025} \times \frac{1}{9} = 444$$
$$\Rightarrow \frac{\mathsf{TPR}}{\mathsf{FPR}} > 444 \times \frac{0.018}{0.755} = 10.6$$

Sample Size Calculations

- notation: ROC(f) = TPR corresponding to biomarker positivity threshold that yields FPR = f
- conclude biomarker useful if $ROC(0.05) \ge 0.53$
- H_0 : ROC(0.05) = 53% versus H_1 : ROC(0.05) = 0.73
 - 0.73 is based on preliminary data
 - details in Pepe (2003) textbook
- $n_{\text{cases}} = 40$ and $n_{\text{controls}} = 160$ yields 71% power
 - Stata software
 - DABS FHCRC website

Results of EDRN-PLCO Collaborative Study

ROC(0.05)

	Phase 2 preliminary data	\leq 6 months	6 – 12 months	12 – 18 months	
Marker	(160 cases)	(45 cases)	(22 cases)	(17 cases)	
CA-125	0.73	0.80	0.32	0.12	
HE4	0.57	0.60	0.23	0.06	
MMP7	0.47(?)	0.20	0.14	0.18	
Spondin 2	0.28	0.11	0.14	0.06	
CA72-4	0.40	0.44	0.14	0.20	
MIF	0.15	0.18	0.09	0.00	

Cramer et al. Ovarian cancer biomarker performance in prostate, lung, colorectal, and ovarian cancer screening trial specimens. Cancer Prevention Research 2011; 4:365–74

When a Biomarker Test X Already Exists

Examples: PSA, CA-125, mammography

Incremental value

- performance of (X, Y) combined versus X alone
- ROC(0.05) improved from 0.68 to 0.71

- not possible if X already in use (verification bias)
- cautions: independent data to evaluate improvement versus to combine markers
- use a "proper" statistics e.g., ΔROC(0.05),not NRI

The NRI Statistic can be Misleading

 $NRI = \{P(\text{risk}(X, Y) > \text{risk}(X) | \text{case}) - P(\text{risk}(X, Y) < \text{risk}(X) | \text{case})\} \\ + \{P(\text{risk}(X, Y) < \text{risk}(X) | \text{control}) - P(\text{risk}(X, Y) > \text{risk}(X) | \text{control})\}$

Pencina et al Stat in Med 2008, 2010

Table: Rates at which the null hypothesis of no performance improvement is rejected in favor of the one-sided alternative hypothesis that prediction is improved by adding the four biomarker panel to the baseline clinical score^{*}

Dataset	NRI‡	LR [‡]	∆AUC ‡
Training set (n = 420)			
Using training set risks, TR-TR	63.0%	5.3%	9.8%
Test set (n = 420)			
Using training set risks, TR-TS	23.2%	—	1.1%
Using re-estimated risks, TS-TS	19.4%	4.7%	1.5%
Test set (n = 840)			
Using training set risks, TR-TS	34.4%	—	0.6%
Using re-estimated risks, TS-TS	18.8%	5.1%	1.8%

* Because the biomarkers have no association with the outcome in the population, all rejections are false-positive results.

[†] AUC = change in the area under the receiver operating characteristic curve; LR = likelihood ratio; NRI = Net Reclassification Index; TR = training dataset; TS = test dataset.

[‡] Five thousand simulated studies in which the biomarkers have no association with outcome. Nominal rejection rates are 5.0%.

Pepe et al JNCI 2014

Use a Clinically Relevant and Valid Statistic

- AUC not relevant
- NRI not relevant (usually)
- TPR at pre-specified low FPR relevant in screening
- FPR at pre-specified high TPR relevant in diagnosis
- Net Benefit = $B \times \text{TPR} \times \rho C \times \text{FPR} \times (1 \rho)$ Standardized NB = $\text{TPR} - (\frac{C}{B})\text{FPR}\frac{(1-\rho)}{\rho}$
 - Vickers and Elkin Med Decision Making (2004)
 - meaningful as discounted TPR

Discovery Research

- Not producing biomarkers that validate
- Biased designs are common in discovery research
- Yield biomarkers of non-disease related differences between cases and controls
 - anesthesia, medication use, stress, . . .
 - aging, other medical conditions,
- Yield biomarkers that look great
 - in severe cases, at diagnosis . . .

Discovery Research

• Should use PRoBE designs too.

Pepe MS, Li CI, Feng Z. Improving the quality of biomarker discovery research: the right samples and enough of them. Cancer Epidemiol Biomarkers Prev. 2015

Sample Size Calculation for Colocare Study

Colocare

- stage 1 colon cancer
- markers for 'high' risk of recurrence within 2 years ρ = overall recurrence rate = 10%
- 'high risk' = 30% = r, warrants chemotherapy
- useful marker: TPR/FPR $\geq \left(\frac{1-\rho}{\rho}\left(\frac{r}{1-r}\right) \approx 3.9\right)$
- fix FPR=10%
- # candidate biomarkers = 9,000

Operating Characteristics

- False leads expected:% FLE=proportion of null markers filtering in = 2% say
- Discovery power: proportion of useful markers filtering in = 95% say
- Filter in criterion: *p*-value for biomarker < *C*

Calculations

- Fix % FLR = 2% by choosing C = 2%
- works in theory, not always in practice with small samples
- simulations to refine *C* simulations to calculate discovery power
- not computationally intensive: vary # cases and # controls
- 40 cases, 160 controls, C = 1% yields FLE% = 2.3% and Discovery Power = 95%

Summary

- phases of research
- PRoBE ideal design for validation
- PRoBE ideal design for discovery
- many basic statistical issues
 - measures of performance
 - how to accommodate covariates ?
 - is matching a good idea?
 - failure time event data?
 - etc.
- DMCC provides leadership and excellent implementation

Colleagues at EDRN

Ziding FengRoss PrenticeJackie DahlgrenMark ThornquistYing HuangJackie DahlgrenYingye ZhengHolly JanesSudhir Srivastava